Heat Kernel Estimates of Fractional Schrödinger Operators with Negative Hardy Potential
نویسندگان
چکیده
منابع مشابه
Heat Kernel Estimates for Dirichlet Fractional Laplacian
In this paper, we consider the fractional Laplacian −(−∆)α/2 on an open subset in R with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such Dirichlet fractional Laplacian in C open sets. This heat kernel is also the transition density of a rotationally symmetric α-stable process killed upon leaving a C open set. Our results are the first sharp two-sided ...
متن کاملHeat kernel estimates for the fractional Laplacian
Explicit sharp estimates for the Green function of the Laplacian in C domains were completed in 1986 by Zhao [42]. Sharp estimates of the Green function of Lipschitz domains were given in 2000 by Bogdan [6]. Explicit qualitatively sharp estimates for the classical heat kernel in C domains were established in 2002 by Zhang [41]. Qualitatively sharp heat kernel estimates in Lipschitz domains were...
متن کاملDirichlet Heat Kernel Estimates for Fractional Laplacian with Gradient Perturbation
By Zhen-Qing Chen∗,‡, Panki Kim†,§ and Renming Song¶ University of Washington‡, Seoul National University§ and University of Illinois¶ Suppose that d ≥ 2 and α ∈ (1, 2). Let D be a bounded C open set in R and b an R-valued function on R whose components are in a certain Kato class of the rotationally symmetric α-stable process. In this paper, we derive sharp two-sided heat kernel estimates for ...
متن کاملHeat kernel estimates for the Dirichlet fractional Laplacian
Abstract. We consider the fractional Laplacian −(−1)α/2 on an open subset in Rd with zero exterior condition. We establish sharp two-sided estimates for the heat kernel of such a Dirichlet fractional Laplacian inC1,1 open sets. This heat kernel is also the transition density of a rotationally symmetric α-stable process killed upon leaving a C1,1 open set. Our results are the first sharp twoside...
متن کاملHardy Space Estimates for Multilinear Operators, Ii
We continue the study of multilinear operators given by products of finite vectors of Calderón-Zygmund operators. We determine the set of all r ≤ 1 for which these operators map products of Lebesgue spaces Lp(Rn) into the Hardy spaces Hr(Rn). At the endpoint case r = n/n+m+ 1, where m is the highest vanishing moment of the multilinear operator, we prove a weak type result. 0. Introduction A wel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Potential Analysis
سال: 2019
ISSN: 0926-2601,1572-929X
DOI: 10.1007/s11118-019-09795-7